Protein hydrogen exchange: testing current models.

نویسندگان

  • John J Skinner
  • Woon K Lim
  • Sabrina Bédard
  • Ben E Black
  • S Walter Englander
چکیده

To investigate the determinants of protein hydrogen exchange (HX), HX rates of most of the backbone amide hydrogens of Staphylococcal nuclease were measured by NMR methods. A modified analysis was used to improve accuracy for the faster hydrogens. HX rates of both near surface and well buried hydrogens are spread over more than 7 orders of magnitude. These results were compared with previous hypotheses for HX rate determination. Contrary to a common assumption, proximity to the surface of the native protein does not usually produce fast exchange. The slow HX rates for unprotected surface hydrogens are not well explained by local electrostatic field. The ability of buried hydrogens to exchange is not explained by a solvent penetration mechanism. The exchange rates of structurally protected hydrogens are not well predicted by algorithms that depend only on local interactions or only on transient unfolding reactions. These observations identify some of the present difficulties of HX rate prediction and suggest the need for returning to a detailed hydrogen by hydrogen analysis to examine the bases of structure-rate relationships, as described in the companion paper (Skinner et al., Protein Sci 2012;21:996-1005).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorptive Removal of Al, Zn, Fe, Cr and Pb from Hydrogen Peroxide Solution by IR-120 Cation Exchange Resin

  Adsorption of cations Al, Zn, Fe, Cr and Pb from aqueous solution of hydrogen peroxide using IR-120 cation-exchange resin was studied. The removal percentage of the cations was examined by varying experimental conditions (such as pH of the hydrogen peroxide solution, temperature, contact time and dosage of adsorbent) i...

متن کامل

Hydrogen exchange studies of protein structure.

Hydrogen exchange techniques, with their residue-level specificity, exquisite sensitivity, and adaptability to many solution conditions, are becoming essential to the study of protein stability, folding and dynamics. Recent studies have elucidated the structures of intermediates formed transiently during protein folding and rare partially folded ensembles present at equilibrium. Analysis of hyd...

متن کامل

The effect of inclined radial flow in proton exchange membrane fuel cells performance

Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...

متن کامل

Electrochemical Study of Hydrogen Adsorption/Reduction (HAR) Reaction on Graphene Oxide as Electrocatalyst for Proton Exchange Membrane Fuel Cells

In the current work, graphene oxide (GO) samples were prepared at room temperature from graphite flakes using a modified Hummer's method to produce metal-free electrocatalysts. The effect of the duration of the oxidation process on the structural, chemical and physical characteristics of the GO samples was evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...

متن کامل

Mechanisms and uses of hydrogen exchange.

Recent work has largely completed our understanding of the hydrogen-exchange chemistry of unstructured proteins and nucleic acids. Some of the high-energy structural fluctuations that determine the hydrogen-exchange behavior of native macromolecules have been explained; others remain elusive. A growing number of applications are exploiting hydrogen-exchange behavior to study difficult molecular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2012